k^2=225k

Simple and best practice solution for k^2=225k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2=225k equation:



k^2=225k
We move all terms to the left:
k^2-(225k)=0
a = 1; b = -225; c = 0;
Δ = b2-4ac
Δ = -2252-4·1·0
Δ = 50625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{50625}=225$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-225)-225}{2*1}=\frac{0}{2} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-225)+225}{2*1}=\frac{450}{2} =225 $

See similar equations:

| -17+8x=23 | | 5(3x-5)=2(5x+20) | | 4x-2(x+1)=-16 | | -49=-v/4 | | -9+8x+-12=45 | | 36=3x+18 | | 6-5z=-8-5z | | -6-4(3m+6)=-38-8m | | -48-10p=-1-7(3p+2) | | 4(x+3)/5=2x | | 2x−40=−8(4x+5) | | 3(-2+2x)+4x=-46 | | f(4)=-(4-7)+7 | | 14-10x=-4(x+4) | | 5-3(2x-7)=-31 | | 1,200-5(3x+30)=600. | | -4y+2(y-4=-22 | | -6(6x-1)-2=-36x+3 | | 5.3=z+2.7 | | 6+8x=2+4x | | -6x+5=-6×-9 | | x+2x-7=143 | | n4=9 | | 4x−3(2x−3)=11x | | -37-4v=-3(-5+10v) | | 5(x+4)=1(8x+38) | | 60/x=15/14 | | 3=x+12-x | | 5y+29=-16 | | 28x-14=32 | | 2(n-7)=-23 | | 6x-16=82 |

Equations solver categories